Методы бикластеризации для анализа интернет-данных


Введение - часть 4


Отдельно стоят методы спектральной кластеризации, которые изначально опираются на спектральные свойства матричного представления графа связей между объектами. В последнее время эти методы активно применяются в Интернет-маркетинге, где связи "рекламодатели-слова" представлены двудольным графом [] и помогают отыскивать потенциальных рекламодателей среди тех, кто не использует некоторые из слов, что купили их конкуренты. Фактически, эти методы искусственно адаптированы для задачи бикластеризации, поскольку для найденных кластеров приходится восстанавливать их объектно-признаковую структуру (т.е. бикластер).

Для большинства методов, происходящих не из сообщества ФАП, характерно отсутствие иерархии порожденных кластеров, что затрудняет их анализ исследователем. В рамках работы будет предпринята попытка установить возможность построения такой иерархии для остальных методов бикластеризации; такая иерархия предположительно будет носить решеточный или полурешеточный характер.

Исследователями вне ФАП также не используется аппарат ассоциативных правил, являющихся ключевыми в Data Mining при поиске признаковых зависимостей. Ассоциативные правила можно порождать на признаковых описаниях бикластеров, предполагается проведение соответствующих экспериментов. Помимо исследователей, использующих аппарат ассоциативных правил, в Data Mining существует сообщество FIMI (Frequent Itemset Mining Implementation), изучающее проблемы поиска частых (замкнутых) множеств признаков в больших базах данных. Отметим, что замкнутые множества признаков являются в точности содержаниями формальных понятий. Поэтому, как модель бикластеризации, методы FIMI будут включены в обзор.

Максимальные замкнутые множества признаков составляют только часть замкнутых, а потому их можно рассматривать в качестве альтернативы способам сокращения числа формальных понятий для модели ФАП. Еще одним из способов такого сокращения является использование решеток-айсбергов, предложенных в [], этот подход аналогичен отбору ассоциативных правил в Data Mining по порогу величины поддержки.




Начало  Назад  Вперед



Книжный магазин